Herzan Helps Researchers Remove Environmental Noise from Their Measurements Through its Acoustic, Vibration, and EMI Isolation Solutions.
Acoustic, Vibration, and EMI Isolation
Sub-Hertz Vibration Attenuation
Achieve Max Resolution With A Sub-Hertz Vibration Attenuation System
For over 25 years, Herzan has been helping researchers achieve more from their research by removing disruptive vibration noise from affecting their instrument. Vibration noise can cause distortions to occur in imaging, making understanding data collected less precise.
Herzan sub-hertz vibration attenuation systems help reduce noise found in imaging, whereby maximizing the quality of data collected for a wide range of instruments and applications.
Atomic Force Microscope Supported By A TS Series Table
“Simply put, our experiments would not be possible without the equipment from Herzan. It allows us to do even single-molecule experiments on the second floor of a shaky building!” – Professor Volkmar Heinrich, UC Davis
Trusted By Instrument Makers and Their Users
*All logos and trademarks are property of their respective owners
Herzan has partnered with customers around the world to share their experiences highlighting how they were able to eliminate troublesome environmental noise and maximize the utility of their instrumentation by partnering with Herzan to define a solution.
Micro-Pipette + TS Series
The Nano-Bio Lab at the University of Texas at Dallas saw vibration noise not being isolated by their optical table. As a result, they turned to the TS-150 vibration isolation table as a solution to help remove the low-frequency vibration noise from limiting their research.
The Zewail Group operating a Quanta FEG 650 interfaced with a custom optical set-up to enable ultrafast electron microscopy imaging. Feeding laser into SEM chamber requires positional stability within a few micrometers, so SEM internal air isolation was not in use.
Researchers at Essilor USA observed a substantial amount of vibration noise limiting their Keyence VK-X250 3D Laser Scanning Confocal Microscope. The resulting vibration noise affected their surface roughness measurements, resulting in inaccurate results. To combat these issues, Essilor worked with Herzan to discover the best solution for their instrument given the severity of their environment: the TS-140 active vibration isolation table.
Researchers at the School of Mathematical and Physical Sciences at Newcastle University were facing limitations in the performance of their Omicron Variable Temperature UHV-STM. They had determined that vibrations from a nearby highway were preventing them from using the instrument